Apr q: Field extersins

Anuancerkert

- HWZ due today
- Quir 1 an Monda

Sl.Recap Legrage's soln

- Car assume

$$
f(x)=x^{4}+a_{2} x^{2}+a_{1} x+a_{0}
$$

Assume $\left.f(x)=(x-2)_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)\left(x-\alpha_{2}\right)$

$$
\begin{aligned}
0=a_{3} & =-s_{1}=-\left(\alpha_{1}+-\alpha_{4}\right) \\
a_{2} & \left.=s_{2}\left(\alpha_{1}, \alpha_{4}\right)=\alpha_{1}+\alpha_{2}-\alpha_{3}+\alpha_{3}+\alpha_{2}\right) \\
a_{2} & =-s_{3} \\
a_{0} & =s_{4}^{3} \\
\text { Let }\left\{f_{1}\right. & =\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}+\alpha_{2}\right) \\
\text { orit }\left\{f_{2}\right. & =\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{4}\right) \\
s_{4} f_{1}\{ & f_{3}
\end{aligned}=\left(\alpha_{1}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right) .
$$

$$
\alpha_{1}+\alpha_{2}=-l_{3}+\alpha_{2} \mid
$$

Idea: Sslue for $f_{i}^{\prime} s$.

$$
\left(x-f_{2}\right)\left(x-f_{2}\right)\left(x-f_{3}\right) \in Q[x]
$$

\qquad they are polynoniahs in a_{i}^{\prime} 's.

Then solve for dis. 2

$$
\alpha_{1}=\frac{\sqrt{-f_{1}}+\sqrt{-f_{2}}+\sqrt{-f_{3}}}{2}
$$

High level explatitin explaithy wing Galon theory.
Let $H \subset S_{4}$ stabilizer of

$$
f_{1}=\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}+\alpha_{4}\right)
$$

- $H \equiv \pi / 2 \times \pi / 2$ gereatal by (12) ard (34)
- $\mathrm{HCS} S_{4}$ nomal \& $\mathrm{S}_{4} / \mathrm{H} \equiv \mathrm{S}_{3}$
(have sujectin $S_{4} \rightarrow S_{3}$)

$K=$ spilting fecle off $=Q\left(\alpha_{2}, \ldots, \alpha_{4}\right)$
$L=$ splilling liade of cabir $(x-f)\left(x-f_{2}\right)(x-x)$ $=Q\left(f_{1}, \epsilon_{2}, f_{3}\right)$

High level explation explainty wing Gaton theory.
Let $H \subset S_{y}$ stabilizer of

$$
f_{1}=\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}+\alpha_{4}\right)
$$

- $H \cong \pi / 2 \times \pi / 2$ gereratal by (12) ard (3 4)
$H \subset S_{4}$ normal \& $S_{4} / H \equiv S_{3}$
thave sujecth $S_{4} \rightarrow S_{3}$
malois theory

$K=$ spliting Rell off
 $=Q\left(\alpha_{1}, \ldots, \alpha_{4}\right)$
L espliting biade of cabii $\left(x-f_{1}\right)\left(x-f_{2}\right)\left(x-f_{3}\right)$ $=Q\left(f_{1}, f_{2}, f_{3}\right)$ 1 C

$$
S_{4} \nabla^{H}
$$

Is there a suijectin

$$
S_{3} \rightarrow S_{2} ?
$$

kernel $\langle(L 23)\rangle=2 / 3 \quad C_{3}$ normal.

- Liacit abaet

$$
\begin{aligned}
& \text { it abaet } \\
& S_{5} \rightarrow S_{4} ?
\end{aligned}
$$

No! We will see Hat this the reason that geeal cuindic won't har sohs.
merange dircctrs
\$2. Rings, greps \& feeds

- a ring R has a malt x satisfily axioms
Note: addition is commataine multi. ray wist be
- Say R comantathe if rall. is commutative.
- a group C has a molt x Again, not assume to be conmatiover,
Say l^{5} abelian if it's cormutatly.
We care about non-abetion gps.
- A field is a convening F such that every $x \neq 0 \in F$ has a malt. inverse.
Raul: F fickle, then (F, t) gray
(F $10, x$) group

S3. Quchiant
(1) Let a be a group acting on a set X.
Define the gustiest
$x / C:=$ set of orbits
on element of X / G is an orbit $C_{1} x$
$c_{x}=c_{y} \in x / h_{1}$ ifs $y \in C_{x}$
Have $X \xrightarrow{\pi} X / G$
were $\pi(x)=\pi(y) \Leftrightarrow c_{0}=h_{y}$
\rightarrow We can thine X/G as
the set X where we iclalify x and y iff $C_{x}=C_{y}$
Abuse nitatim: Let $x, y \in X$
Say $x=y \in X / a$ ff $\mathrm{Cix}=\mathrm{h}_{\mathrm{y}}$
Or can be more precise and white $\bar{x} \in x / G$ as image of x.

S3. Quokiant
(1) Let a be a group acting on a set X.
Define the quatient
$X / a:=$ set of orbits
(2) Consides $H \subset C$ subgroup

Let t act on G via mult.
The quotrient of C by H is
$G / H=$ orbits of H activinan
Here: because H is a ssbgp, all orbits have the same size.
They book like $g H=\{g h \mid h \in H\}$ to $g t h$ $g H=g^{\prime} H \Longleftrightarrow g(g)^{-1} \in H$

Defn $H C h$ is nomal if
$\forall g \in C$ and $h \in H$ ghg $\in H$.
Fact If HIGG is nomal, then C/H is a groap anl C—C/H is a grop lon with kernd H.
Det Say G is soluable if
$J\left\{e_{u} \leq H_{1} \Delta H_{2} \Delta \cdots \Delta H_{k}=C_{1}\right.$ H。
chail it nomal sabope sach that $\mathrm{H}_{i+1} / \mathrm{H}_{i}$ abclian,
(3) R cam. ing

Say a subset $I \subset R$ is an ideal if
(1) subgp with ropect h ald
(2) $\forall x \in R, a \in I \quad x a \in I$

The gootient of R by I is
RII as quotist of abelian $\operatorname{grip}(R, t)$ by allitive siogp $I \subset R$.
FFALT RKE is comnning anl $R \rightarrow R H$ is aring hon

Detn
(1) A fell extesion $K-L$ is a lion of fields
(2) $K c \bar{K}($ ex: $Q c \notin)$

If $\alpha \in \bar{K}$, then

$$
\begin{aligned}
K(\alpha):= & \text { cmallest sidfeel of } \mathbb{} \\
& \text { containty } \alpha .
\end{aligned}
$$

$K-H(l)$ simple field ext.

